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1Abstract—In this paper we present a numerical study of the 

Matsuoka-based neuron oscillator model. The Matsuoka-based 
neuron oscillator model is one of the most popular CPG (central 
pattern generator) models in robot motion control. In this paper, 
numerical simulation is conducted to analyze the influence of the 
parameters on the output signals. A mass-spring-damper system 
is used as an example to analyze the entrainment properties of 
the neuron oscillator. The main engineering application methods 
of these CPG-inspired control methods are concluded. The 
motivation is to present a practical guide to researchers and 
engineers interested in the CPG-inspired control approaches. 

Keywords-CPG; Neuron oscillator; Matsuoka model; motion 
control; robot 

I. INTRODUCTION  
In biology, the mechanism and biological CPG modeling 

have been studied in great detail [1]. In robotics, studying and 
mimicking animals’ motion mechanisms for engineering 
applications is gaining increasing interest. It is believed that 
the CPG-inspired control method is an efficient way to break 
the bottleneck of motion control for robots: (1) it can produce 
periodic control signals even without sensory inputs, while 
sensory feedback signals can also modulate the activity of the 
CPG. So, with the CPG-inspired method, robots can either 
walk on a flat terrain with open-loop control or adaptively 
walk on an irregular terrain with closed-loop control; (2) it is a 
distributed control method. A CPG network coordinates all 
joints to complete a movement. By modulating the parameters 
of the CPG model, it can generate outputs with different phase 
relationships. These phase relationships can be used to acquire 
different gait patterns; (3) it can adapt to the environment via 
its entrainment property, which combines the neural system, 
body, and environment.  

In applying CPG control in engineering applications, the 
first step is to mimic the CPG mechanism. Various kinds of 
mathematical models are commonly used in CPG-related 
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studies. In general, there are three kinds of modeling methods: 
using biological neuron models to mimic the intrinsic 
properties of biological CPG; using half-center models to 
mimic the muscle control mechanism of animals; and using 
nonlinear oscillator models to mimic the dynamic properties 
of CPG.  

In the first modeling method, biologists try to mimic 
biological CPG models by using a neuron model. However, 
due to the complexity involved in neuron structure and neural 
system characteristics, it is difficult to clearly identify the 
existing biological CPG models. The most famous neuron 
model is the Hodgkin-Huxley model [2]. While analyzing 
biological neuron models, detailed dynamic characteristics of 
small circuits usually need to be considered, such as 
pacemaker properties of signal neurons, and the mechanism of 
the rhythmogenesis of a large population of neurons.  

In the third modeling method (skipping the second for the 
moment), models of physical dynamic systems are usually 
used, and relevant examples include the Kuramoto model [3], 
Hopf model [4], Van der Pol model [5]. The motivation for 
using a nonlinear oscillator as a CPG unit is that we do not 
have to study the detailed oscillatory mechanisms; this method 
only focuses on the bulk properties of the network, such as 
how to adjust parameters to get outputs with the desired 
amplitude, frequency and phase relationships. The advantage 
of the third class of models for engineering applications is the 
relative ease of implementation. However, the third type of 
models has less biological meaning than the other two models 
and it is more difficult to mimic the tonic input and sensory 
feedback of the biological CPG. 

In engineering applications, the second class of models is 
used most widely. In nature, one degree of freedom (DoF) of 
joints is usually operated by two antagonistic groups of 
muscles. Inspired by this, half-center oscillator models have 
been proposed. Brown [6] proposed a half-center oscillator 
model as the basis to alternate activities of flexors and 
extensors. When the two neurons were reciprocally coupled, 
the oscillator would produce alternating rhythmic movement. 
The Matsuoka oscillator model [7, 8] has been widely used in 
rhythmic locomotion control of robots. Matsuoka analyzed 
mutually inhibiting neurons and found the conditions under 
which the neurons generate oscillation. Based on Matsuoka’s 
model, Taga et al. proposed a similar model [9], which used a 
set of inhibitory-connected neuron oscillators to build a 
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network. Kimura et al. [10] constructed a neural system based 
on the neural oscillators proposed by Matsuoka and Taga.  

A major difficulty in applying CPG controllers is that the 
parameters and outputs are strongly coupled. So, before 
applying CPG models to robots, the parameters and properties 
of the models must be analyzed. There is no well-established 
parameter analysis methodology for the CPG model. A trial-
and-error method is usually used in engineering applications. 
This method is tedious and inefficient. Sometimes, genetic 
algorithms (GA) have been used to evolve the parameters of 
the CPG model. The main disadvantage of this method is that 
it is difficult to design a proper fitness function, since too 
many aspects need to be considered. In this paper, we will 
focus on the Matsuoka-based half-oscillator model. The 
motivation of the paper is to present a useful exploration of 
Matsuoka-based motion controllers. We focus on a numerical 
analysis method to analyze the influence of the parameters to 
the outputs of the oscillator model. This will be the basis for 
the other parameter analysis methods. 

The rest of the paper is organized as follows. Section II 
reviews the existing Matsuoka-based oscillator models. In 
Section III, by using numerical simulation methods, the 
influences of the model parameters on the outputs are 
investigated in detail. Coupled with a simulated mass-spring-
damper system, the entrainment property of the model is 
studied. Section IV analyzes the application of the Matsuoka-
based oscillator models in locomotion control of robots. 
Section V gives some concluding remarks.  

II. MATSUOKA-BASED NEURON OSCILLATOR MODELS 
The neural oscillator model proposed by Matsuoka is the 

best known CPG model in robotics engineering applications. It 
is composed of two identical neurons. The neuron model 
mimics the average of spike activity of the biological neuron. 
The dynamics of the two neurons are given by the following 
differential equations [7, 8]: 
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where , 1, 2i j =  and i j≠ . Variables ( )ix t  and ( )iy t  
represent the membrane potential and firing rate of the neuron, 
respectively. In this model, the self-inhibitory term ( )iv t  is 
used to mimic the fatigue property of the neuron. Parameters 

rT  and aT  are the time constants which determine the reaction 
times of the variables ( )ix t  and ( )iv t . Parameters ijw  and β  
represent the strengths of mutual- and self-inhibition, 
respectively. Parameter 0s  mimics the tonic input to the 
neuron. Function ( )g x represents a threshold property of the 
neurons. 
   In the robotics field, the Matsuoka oscillator model has been 
widely applied to the locomotion control of robots because of 
its simplicity and other attractive properties. Based on 
Matsuoka’s oscillator model, Taga proposed a similar 
oscillator model to generate neural rhythmic signals [9]. The 
Matsuoka and Taga oscillators only generate positive output 

signals. But for the application of joint control of robots, we 
need to control the motor with positive and negative angles, so 
Kimura et al. [10] constructed a neural system based on the 
oscillator models proposed by Matsuoka and Taga. This model 
consists of two mutually inhibiting neurons, which are 
represented by the following nonlinear differential equations: 
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(3) 
Here the subscripts i , e  and f  denote the thi oscillator, an 
extensor neuron and a flexor neuron, respectively. iu  is the 
inner state, iv is a variable representing the degree of the self-
inhibition effect; rT  and aT  are the time constants; few  is the 
connecting weight between flexor and extensor neurons; ijw  
is the weight of inhibitory synaptic connection between the 
thi  and thj  neurons; Parameter β  is a constant representing 

the degree of the self-inhibition influence on the inner states 
iu , and 0s  is the external input. iFeed  is the feedback 

signal—the term that entrains the oscillator system with the 
environmental information. In this model, the output iy  of the 
thi oscillator is the linear summation of the neural outputs 

{ },e f
iy  to generate a zero-axial symmetric oscillatory signal. 

The positive or negative value of iy  corresponds to the 
activity of a flexor or extensor neuron, respectively.  

Matsuoka-based neuron models have clear biological 
meanings as well as simple mathematical expression. 
Matsuoka-based models can easily couple feedback 
information from the environment and the higher-level 
commands. In Kimura’s model, sensory feedbacks can be 
integrated to the oscillator network through the term iFeed  
and the external input term 0s  simulates control signals from 
the higher-level nervous system control. This provides the 
opportunity to obtain mutual entrainment between the 
oscillator network and the mechanical body.   

III. ANALYSIS OF THE NEURON OSCILLATOR MODEL 
Because of the strong coupling of parameters, the 

performance analysis of the oscillators becomes the major 
difficulty for engineering application. The oscillator control 
network is a nonlinear dynamic system with output signals 
that are sensitive to parameters. We must grasp the 
relationships of the parameters and the important qualities, 
such as frequency, amplitude, and phase relationships, 
between the neurons and the waveform of the output signals. 
A. Parameter analysis 

In this paper, numerical analysis methods will be introduced 
to analyze the effect of the parameters on the system output. 
With this method, we first find the general relationships 
between parameters and outputs through computer simulation. 
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Then we adjust the parameters according to the desired 
patterns. For example, as shown in equation (3), there are 
many tunable parameters, if we use this oscillator to construct 
a controller to realize locomotion control of a robot. The 
parameters of the oscillator must be modulated according to 
the request of the controlled robot, like the walking cycle, 
walking pattern, etc. In the numerical simulation method, the 
effect of each parameter on the output is analyzed, focusing on 
the ability to change the output’s waveform and the impact of 
the change on the period as well as the phase relationship of 
the generated rhythmic signal. During parameter analysis, the 
other parameters are fixed as Table I shows, while one 
parameter varied over an acceptable range (the parameters in 
Table I are set according to the parameter relationships used to 
generate stable oscillation in Matsuoka’s work [7][8] ). 

         
Parameter 0s : this value must be positive to oscillate the 

interconnected neurons. As Fig. 1 shows, the output amplitude 
increases linearly with 0s  and it does not affect the frequency 
of the output. So in engineering applications, this value can be 
used to adjust the amplitude of the output rhythmic signal. 
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 Figure 1.   The influence of 0.s

  

       
Parameters β  and few : parameter β  is used to mimic the 

strength with which the internal state iv  suppresses the firing 
rate of the neuron. Parameter

 few
 
is the gain of mutual 

inhibition between two neurons. In the acceptable values, as 
shown in Fig. 2, the output amplitude and oscillation period 
decrease with β  and increase with few in nonlinear fashions. 
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Figure 2.  The influence of inhibitory parameters.  

Parameters rT  and aT : a variable =T / Ta rη  is introduced to 
describe the effect of the time constants. As Fig. 3(a) shows, 
the time ratio η  affects the amplitude of the oscillator in a 
nonlinear way, and the period in a more linear way. If the time 
ratio η  keeps as a constant, take 10η = , for example, Fig. 
3(b) shows the relationship between rT  and the output signals; 
the oscillation period increases in an almost linear fashion, 
while the amplitude varies nonlinearly. But in some range, the 
amplitude will not affected by the parameter rT , the amplitude 
will keep constant like Fig. 3(b) (from (A) to (B)) shows. So, 
in engineering applications, if β  and  few  and the ratio η  are 
kept constants, there is a linear relationship between the period 
and parameter rT . When the period is adjusted, in some range, 
the amplitude of the signal will not be affected.   
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    Figure 3.  The influence of time constants.  

Parameter ijw : adjusting this term can modify the phase 
relationship of the output oscillation signals. Take a four- 
connected-oscillator network for example (Fig. 4). If we want 
oscillator signals that are / 2π  out of phase (like a walk 
sequence for a quadruped robot), we can set the connection 
matrix as walkW  (Table I). For this parameter setting method, 
the initial values of the four oscillators 0State affect the phase 
relationships. For example, if we set 

0

-0.54 0.16 0.38 0.11
0.38 0.11 -0.54 0.16
0.21 0.22 -0.58 0.10
-0.58 0.10 0.21 0.22

State

� �
� �
� �=
� �
� �
� �

, we can get the general 

transverse walking gait. Four units oscillate with / 2π  out of 
phase (Fig. 5(a)). If we instead set the initial states as 

TABLE I  VALUES OF THE PARAMETERS 
Parameter Values 

0, ,r aT T s  0.04, 0.4,1.0 

,few β  2.0, 2.5 

0 0 0 0, , ,e e f fu v u v� �� �  
walkW , trotW  

0.0111 0.0081 0.0022 0.0057� �� �  
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

− − −� �
� �− − −� �
� �− − −
� �
− − −� �

,

0 1 1 1
1 0 1 1

1 1 0 1
1 1 1 0

− −� �
� �− −� �
� �− −
� �
− −� �
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0

0.37 0.20 0.49 0.34
0.95 0.92 0.05 0.74
0.27 0.42 0.55 0.94
0.42 0.98 0.30 0.70

State

� �
� �
� �=
� �
� �
� �

, the rotary walking sequence 

shown in Fig. 5(b) is generated. As Fig. 5(c) shows, if we set 
the connection matrix to trotW  (Table I), and the initial states 

as 0

0.37 0.20 0.49 0.34
0.95 0.92 0.05 0.74
0.27 0.42 0.55 0.94
0.42 0.98 0.30 0.70

State

� �
� �
� �=
� �
� �
� �

, the trotting sequence will 

be generated. 

OSC1 

ijw  

OSC2 

OSC3 OSC4 

       Figure 4.   Oscillator network. 
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        (b) Rotary walking sequence 
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(c) Trotting sequence 

Figure 5.  Oscillation sequences of the four connected oscillators. 

As Fig. 6 shows, the values of ijw  also influence the phase 
relationship and waveforms of the outputs—for example, if 
the values of ijw  are too large—if we enlarge the values of 

ijw  to 4 times walkW —it will affect the waveform as Fig. 6(a) 

shows. If we reduce ijw  to 0.5 times walkW , it will affect the 
waveform and phase relationships as Fig. 6(b) shows. 

In the acceptable value ranges, if we switch the connection 
matrix, we can get a smooth sequence transition from walking 
to trotting, as Fig. 7(a) shows. However, if we transform from 
a trotting to a walking sequence, as shown in Fig. 7(b), the 
phase-locked phenomenon (from (A) to (B)) will be generated. 

There is clearly a transitional phase between gaits. In 
engineering applications, it is usual to change the connection 
matrix to realize a gait transition for the robot.  
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   Figure 6.  The influence of the ijw  values on the outputs. 
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(b) Trotting to walking sequence transition 

Figure 7. Oscillation sequence transition by changing the connection matrix 

B. Property analysis 
In this section, we will use a simulated motor to study 

entrainment property, which makes the CPG autonomously 
adapt to different working condition without changing any of 
its parameters. There is no need for a reference control input; 
the only input the CPG requires to entrain to the state variable 
of the system is as Fig. 8 shows. 

        
Figure 8.  Entrainment setup diagram: the whole system consists of a simple 

mass-spring-damper system coupled to an oscillator. 
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We simulate a simple mass-spring-damper (MSD) system. 
The oscillator can receive feedback information from the 
MSD system. In the simulation study, we will focus on 
adaption of the oscillator to entrain to the MSD system under 
various working conditions. The equation of the MSD and the 
feedback design are shown as follows: 

{ },

0

( )
j j

e f

mx B x K x

feed K r x

+ + =

= ± −

� �
                                (4) 

where m  is the mass, jB is the damping parameter and jK  is 
the coefficient of spring elasticity. aK is the actuator gain 
between the oscillator output and applied moment of force 

aM . The velocity signal of the MSD system is fed to the 
oscillator as feedback information to realize entrainment. K  
is the feedback gain, and the feedback is provided with 
positive sign to the flexor neuron and negative sign to the 
extensor neuron.  

The oscillator parameters are set as shown in Table I. The 
MSD system parameters are set as: 6.0,m =  

1.0jB = , 0.2jK = , 5.0aK = and 10K = . As shown in Fig. 
9(a), with these parameters, the oscillator almost totally 
entrains with the velocity output signals of the MSD system. 
In order to test the oscillator’s capability of adapting to the 
dynamics of the controlled system, the coefficient of spring 
elasticity will be changed to change the frequency of the MSD 
system. As shown in Fig. 9 (b), if the parameter jK  is enlarged 
to 0.5, the amplitude and frequency of the output and input 
signals are changed. As jK  increases, frequency of oscillation 
of the dynamic system will be reduced; the amplitude of the 
dynamic system’s oscillation is also decreased. The oscillator 
and the MSD system are partly entrained, with the same phase 
difference. If we set 2.0jK = , as Fig. 9 (c) shows, the 
oscillator reduces its frequency considerably, and the 
amplitude of the motor is much smaller than that of the 
oscillator.   

From the simulation results, we see that the oscillator uses 
error feedback from the controlled dynamic system to adapt its 
frequency and amplitude to the system response. That is, the 
oscillator can autonomously adapt to different working 
conditions without changing any of its parameters.  
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Figure 9.  Simulation results: output of the oscillator and the entrained motor. 

There are many ways to use this entrainment property of 
CPG. For example, we can adjust the frequency and amplitude 
of the output by using the feedback information. Fig. 10 shows 
the output signal entraining with a sinusoid signal. The 
frequency of the oscillator output is immediately entrained to 
the frequency of the input sinusoid and the phase difference 
between the input and output becomes constant. This 
simulation result shows that the oscillator has the dynamic 
property of being able to be modulated by a feedback signal. 
In the application, adjusting the frequency and amplitude of 
the control signal is a necessary condition to realize adaptive 
locomotion control.  
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Figure10.  Entrainment property of a neuron oscillator. 

IV. APPLICATION METHODS IN THE LOCOMOTION CONTROL OF 
ROBOTS 

In this section, the Matsuoka-based motion control of robots 
will be reviewed with a focus on two general approaches. The 
first one is that one CPG unit is assigned to one DoF, and the 
distributed CPG network can generate complex coordinated 
multi-dimensional control signals used as force or torque 
control signals to realize coordinated locomotion, referred as 
the “CPG-joint control method” [10-13][18][19]. Another 
approach is to assign CPGs to the periodic variables that can 
reflect the characteristics of the motion [14-16]. The 
motivation of using CPGs is that there is no need to 
investigate the details of the underlying driving mechanism of 
locomotion. Rather, the focus should be on the properties of 
CPGs. 
A. Joint space control methods 

This type of control methods is very suitable for fish-like 
and snake-like robots. Many scholars have studied these 
robots that imitate the mechanical structures of natural fish 
and snakes [11] [13]. Ma et al. [18] studied the adaptive 
creeping locomotion of a snake-like robot to environment 
change. Based on Matsuoka’s oscillator, they constructed a 
network with a feedback connection that can generate uniform 
outputs with the same amplitude and the specified phase 
difference without any additional adjustment of oscillator 
network output. Lu et al. [19] built a mutual cyclic inhibitory 
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CPG based on Matsuoka’s model to control the 3D movement 
of a snake-like robot named Perambulator. 

The Matsuoka neuron oscillator, as modified and used for 
quadruped locomotion control, has been widely investigated 
by Kimura’s group. They have focused on using a reflex 
mechanism—that is, using the property of entrainment to 
modify the activity of the oscillators. They use sensory 
feedback that mimics the animals’ reflexes and responses to 
modify the outputs of oscillators according to the walking 
terrain [10]. 

But for more complex legged robots, such as quadruped or 
humanoid robots, joint control signals are very complex for 
the current CPG models to generate. Moreover, using a CPG-
joint control method to guarantee stability of the locomotion is 
very different. For this control method, the stability of a 
walking robot has to be realized by adjusting CPG parameters 
to generate coordinated joint control signals. Due to the large 
number of parameters involved, it is difficult to choose a set of 
appropriate parameters and topology of CPG control network 
to guarantee stability. 
B. Task space control methods 

This method has several advantages when compared with 
the CPG-joint space control method. Assigning CPG outputs 
to the periodic variables during robot locomotion simplifies 
the CPG unit connections and feedback pathways from the 
environment. Adjustment of walking patterns of robots is 
therefore sometimes easier to realize. This method can 
substantially reduce the number of CPGs used and require less 
tuning of the parameters than the CPG-joint space control 
method. 

For legged robots, some periodic variables which can reflect 
the characteristics of gait patterns during walking in task space 
can be controlled or generated based on CPGs. Results in [20-
22] have developed some locomotion control schemes in task 
space. Aoi, Tsuchiya and Tsujita et al. [20], and Endo et al. 
[21] have explored locomotion control methods in the task 
space of legged robots. Endo et al. proposed a novel CPG 
arrangement with respect to the position of the tip of the leg in 
the Cartesian coordinate system, which can be considered as 
workspace coordinates for walking. This method can greatly 
reduce the number of CPGs and require fewer tuning 
parameters. In our previous work [22], we used CPGs to 
generate toe trajectories online in workspace for a robot to 
realize adaptive quadruped walking on various terrains, called 
the “CPG workspace control method”. 

V. CONCLUSION 
In this paper, Matsuoka-based oscillator models have been 

thoroughly investigated. Simulation studies described here 
were systematically performed to study the relations of the 
parameters to the outputs. Through simulation analysis, some 
new findings about the influence of the parameters are given. 
Some entrainment properties of the neural oscillator are 
addressed and verified through simulation study, especially 
with a focus on the sensory feedback of rhythmic patterns. 
Finally, the application methods of the oscillator model in 
engineering applications are discussed. The discussions of the 
Matsuoka-based oscillator model presented in this paper may 
be useful as guidelines to design CPG-inspired locomotion 
control of robots for real world engineering applications. 

REFERENCES 
[1] E. Marder and D. Bucher, “Central pattern generators and the control of 

rhythmic movements,” Current Biology, vol. 11, no. 23, pp. 986-996, 
2001. 

[2] A. L. Hodgkin and A. F. Huxley, “A quantitative description of 
membrane and its application to conduction and excitation in nerve,” J 
Pjysiol,  vol. 117, pp. 500-544, 1952. 

[3] J. A. Acebron, L. L. Bonilla, and C. J. P. Vicente, et al., “The Kuramoto 
model: A simple paradigm for synchronization phenomena,” Rev Mod 
Phys, vol. 77, pp. 137-185, 2005. 

[4] K. Seo, S. J. Chung, and J. J. E. Slotine, “CPG-based control of a turtle-
like underwater vehicle,” Auton Robot, vol. 28, no. 3, pp. 247-269, 
2010. 

[5] J. Hugo Barron-Zambrano, C. Torres-Huitzil, and B. Girau, “Hardware 
implementation of a CPG-based locomotion control for quadruped 
robots,”  ICANN 2010, Part II, LNCS 6353, pp. 276-285, 2010. 

[6] T. G. Brown, “The intrinsic factors in the act of progression in the 
mammal,” Proc Royal Society of London, Ser B, vol. 84, no. 572, pp. 
308-319, 1911. 

[7] K. Matsuoka, “Sustained oscillations generated by mutually inhibiting 
neurons with adaptation,” Biological Cybernetics, vol. 52, pp. 367-376, 
1985. 

[8] K. Matsuoka, “Analysis of a neural oscillator,” Biol Cybern, vol. 104, 
no. 4-5, pp. 297-304, 2011. 

[9] G. Taga, Y. Yamaguehi and H. Shimizu, “Self-organized control of 
bipedal locomotion by neural oscillators in unpredictable environment,” 
Biol. Cybern., vol. 65, no. 3, pp.147-159, 1991. 

[10] Kimura H., Akiyama S. and Sakurama K. Realization of dynamic 
walking and running of the quadruped using neuron oscillator. 
Autonomous Robots, vol. 7, no. 3, pp. 247-258, 1999. 

[11] X. Wu and S. Ma, “CPG-based control of serpentine locomotion of a 
snake-like robot,” Mechatronics, vol. 20, no. 2, pp. 326-334, 2010. 

[12] C. Liu, Y. Chen, J. Zhang, and Q. J. Chen, “CPG-driven locomotion of 
control of quadruped robot,” The IEEE Conf on Systems, Man and 
Cybernetics. San Antonio, TX, pp. 2368-2373, 2009. 

[13] Z. Lu , G. Ma, and B. Li, et al., “Serpentine locomotion of a snake-like 
robot controlled by cyclic inhibitory CPG model,” Acta Autom Sin, vol. 
32, no. 1, pp.133-139, 2006. 

[14] G. Endo, J. Morimoto, T. Matsubara and J. Nakanishi, et al., “Learning 
CPG-based biped locomotion with a policy gradient method: application 
to a humanoid robot,” The International Journal of Robotics Research, 
vol. 27, no. 2, pp. 213-228, 2008. 

[15] C. Liu, Q. Chen, and D. Wang, “CPG-inspired workspace trajectory 
generation and adaptive locomotion control for quadruped robots,” IEEE 
Transactions on Systems, Man and Cybernetics—Part B, vol. 41, no. 3, 
pp. 867-880, 2011. 

[16] Y. Fukuoka and H. Kimura, “Dynamic locomotion of a biomorphic 
quadruped “Tekken” robot using various gaits: walk, trot, free-gait and 
bound,” Applied Bionics and Biomechanics, vol. 6, no. 1, pp. 1-9, 2009. 

[17] A. Kamimura, H. Kurokawa, E. Toshida, and K. Tomita, et al., 
“Automatic locomotion pattern generation for modular robots,” IEEE 
International Conference on Robotics and Automation. pp. 714-720, 
2003. 

[18] X. Wu and S. Ma, “Adaptive creeping locomotion of a CPG-controlled 
snake-like robot to environment change,” Auton Robot, vol. 28, no. 3, 
pp. 283-294, 2010. 

[19] Z. L. Lu, G. S. Ma, and B. Li, et al, “Serpentine locomotion of a snake-
like robot controlled by cyclic inhibitory CPG model,” Acta Autom Sin, 
vol. 32, no. 1, pp. 133-139, 2006. 

[20] K. Tsuchiya, K. Tsujita, K. Manabu, and S. Aoi, “An emergent control 
of gait patterns of legged locomotion robots,” The symposium on 
Intelligent Autonomous Vehicles, Sapporo, Japan, pp. 271-276, 2001. 

[21] G. Endo, J. Morimoto, T. Matsubara, and J. Nakanishi, “Learning CPG-
based biped locomotion with a policy gradient method: application to a 
humanoid robot,” The International Journal of Robotics Research, vol. 
27, no. 2, pp. 213-228, 2008. 

[22] C. Liu, Q. Chen, and D. Wang, “CPG-inspired workspace trajectory 
generation and adaptive locomotion control for quadruped robots,” IEEE 
Transactions on Systems, Man and Cybernetics—Part B, vol. 41, no. 3, 
pp. 867-880, 2011. 

347


